UK long-duration energy storage: ‘Cap and floor’ best investment mechanism available

By Alice Grundy
LinkedIn
Twitter
Reddit
Facebook
Email
Cruachan Dam, Scotland, where Drax has a 440MW pumped hydro energy storage (PHES) facility. Image: Drax.

A cap and floor regime would be the most beneficial solution for supporting long-duration energy storage in the UK, a report from KPMG has found.

The professional services firm was commissioned to write the report by power generation group Drax. It detailed how there is currently no appropriate investment mechanism for long-duration storage. 

This article requires Premium SubscriptionBasic (FREE) Subscription

Enjoy 12 months of exclusive analysis

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Annual digital subscription to the PV Tech Power journal
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

Examining four investment mechanisms – the Contracts for Difference (CfD) scheme, Regulated Asset Value (RAV) model, cap and floor regime and a reformed Capacity Market – it identified cap and floor as the best solution.

Currently, challenges facing long-duration storage projects include revenue and cost uncertainty, long lead times for project development and high upfront capital expenditure requirements.

Last year, the UK government’s Department for Business, Energy and Industrial Strategy (BEIS) issued a call for evidence on how to enable long-duration energy storage, including what the barriers in the current market are and how they might be addressed.

KPMG found that a cap and floor regime would reduce risks for investors while at the same time encouraging operators of new storage facilities to respond to system needs, helping National Grid ESO to maintain security of supply.

In a cap and floor mechanism, revenues or margins are subject to minimum and maximum levels. Below the ‘floor’ customers would top-up revenues, and earnings above the ‘cap’ would be returned in whole or in part to customers

However, a number of specific design features would be needed to reflect the nature of flexibility and long-duration storage projects. Specifically, the mechanism would need to have the flexibility to reflect the differences between long-duration storage technologies, as well as needing to ensure revenue stabilisation does not reduce incentives to deliver market efficient outcomes.

Lastly, charging costs should be treated as ‘market related costs’, which would allow them to be excluded from the building blocks making up the cap and floor levels and instead be treated as netted-off revenue before the comparison to the cap and floor in each assessment period. This means they would be passed through the cap and floor mechanism as opposed to being passed through to consumers. 

KPMG outlined how the same support regime has been “transformational” in unlocking private investment in cross-border interconnectors since its launch in 2014. This is due to investors being able to see the project’s annual maximum and minimum revenues over a 25-year period, which reduces risks.

KPMG also found that while the Capacity Market could provide stable minimum revenue streams for long-duration storage, payments are unlikely to be sufficient to service debt costs for large-scale investment.

The RAV model, meanwhile, may be unlikely to provide sufficient incentives for asset operators to respond to market signals, KPMG said. It also carries minimal competitive pressure to drive efficiency.

Lastly, the CfD has the potential to be unsuitable because it typically incentivises export of power irrespective of market conditions and therefore may not reflect the operating characteristics or value of storage assets.

“With more long-duration storage, the system would operate more effectively in terms of reducing emissions, cutting costs and maintaining secure supplies,” said Penny Small, Drax Group generation director, adding that technologies such as pumped hydro – which Drax owns – are key to achieving net zero due to their ability to store excess renewable generation.

Drax is currently planning on developing a 600MW pumped hydro plant at its existing Cruachan facility in Argyll, Scotland.

Other long-duration storage technologies include liquid air energy storage (LAES) – with Highview Power developing a 50MW/250MWh LAES project in Greater Manchester – as well as various battery storage technologies that are capable of long duration applications, such as vanadium flow storage.

The report echoes views expressed at an event hosted by our publisher Solar Media in March last year. Robert Hull, managing director at energy advisory Riverswan and formerly managing director of UK energy market regulator Ofgem said that overall policy is supportive of long-duration energy storage technologies, yet revenue generating mechanisms in place are inadequate.

While the market for shorter duration technologies, particularly lithium-ion battery storage, has been growing and is buoyant, due to a range of revenue opportunities which can be ‘stacked’ and combined, there are not long-term price signals and therefore a lack of investment certainty for longer duration storage persists, Hull said.

Additional reporting for Energy-Storage.news by Andy Colthorpe.

This story first appeared on Current±.

3 June 2025
Stuttgart, Germany
Held alongside the Battery Show Expo Europe in Stuttgart, Energy Storage Germany spotlights Germany’s rapid ascent in the European storage sector. Once driven by residential demand, utility-scale projects are now surging, with 184 MW added across 44 projects in 2023. With nearly 16 GWh of capacity installed in the first half of 2024, Germany is set to integrate 24 GW of utility-scale energy storage by 2037, creating substantial opportunities.
24 February 2026
InterContinental London - The O2, London, UK
This isn’t just another summit – it’s our biggest and most exhilarating Summit yet! Picture this: immersive workshop spaces where ideas come to life, dedicated industry working groups igniting innovation, live podcasts sparking lively discussions, hard-hitting keynotes that will leave you inspired, and an abundance of networking opportunities that will take your connections to new heights!

Read Next

April 22, 2025
Progress on BESS projects in Saudi Arabia and Chile totalling a combined 16GWh of energy storage capacity using Sungrow and BYD batteries has been revealed by the projects’ owners.
Premium
April 22, 2025
Envision Energy is preparing to reveal lithium-ion (Li-ion) battery energy storage system (BESS) technology for long-duration applications.
April 17, 2025
A proposed landowner-led 576MWh solar-plus-storage site in Tasmania has been added to Australia’s Environment Protection and Biodiversity Conservation (EPBC) Act.
Premium
April 16, 2025
Colorado-based IPP Korsail Energy has been dealt a blow in its quest to develop a 320MWh hybrid solar-BESS project in the Centennial State.
Premium
April 15, 2025
A reduction in price volatility has seen BESS revenue decrease by 40% in Australia’s NEM month-on-month in March 2025.

Most Popular

Email Newsletter